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ABSTRACT 
It is well-known that during the hearing process in the ear and in the 
brain an acoustic stimulus, e.g. a musical harmony, is transformed in 
a highly non-linear way. This can be studied by comparing the 
frequency spectrum of the input stimulus and its response spectrum 
in the auditory brainstem. The latter shows additional frequencies 
which are not present in the input spectrum, in particular the 
periodicity pitch frequency (also known as missing fundamental). 
The aim of this paper is to find out relevant factors that lead to this 
occurrence of the periodicity pitch. The most important factor during 
the neural transformation seems to be the transformation of the input 
signal into pulse trains (spikes) whose maximal amplitude is limited 
by a fixed uniform value. This is shown by comparing the response 
frequency spectrum in the brain with one computed by an artificial 
neural network. 

I. INTRODUCTION 
During the hearing process in the ear and the brain an 

acoustic stimulus, e.g. a musical harmony consisting of 
several complex tones, is transformed in a highly non-linear 
way. The input signal, which may be a superposition of 
periodic signals of certain frequencies and their overtones, 
undergoes a neural transformation in the brain. 

Lee et al. (2009, 2015) investigated this by measuring the 
auditory brainstem response to several musical intervals. They 
report experiments with several musical intervals, discovering 
that the phase-locking activity to the temporal envelope is 
more accurate (i.e. sharper) in musicians than non-musicians. 
For instance, (a) the perfect fifth A2–E3 (i.e. tones with 110 
and 166 Hz and approximate frequency ratio 3:2), shows the 
highest response in the brainstem at about 55.3 ≈ 110/2  Hz, 
and (b) the minor seventh F#2–E3 (93 and 166 Hz, frequency 
ratio 9:5) at about 18.5 ≈ 93/5 Hz. In both cases, the 
additionally occurring frequencies coincide very well with the 
periodicity pitch frequencies of the respective musical 
intervals. 

Recent results from neuroscience demonstrate that 
periodicities of complex chords can be detected in the human 
brain by a system of several neurons (Langner, 1997, 2015). 
Firstly, there are oscillator neurons showing regularly timed 
discharges in response to stimuli, not corresponding to the 
temporal structure of the external signal, i.e. intrinsic 
oscillation. The oscillation intervals can be characterized as 
integer multiples n·T of a base period of T = 0.4 ms with n ≥ 2 
for endothermic, i.e. warm-blooded animals (Langner, 2015, 
Chapter 5). The external signal is synchronized with that of 
the oscillator neurons, which limits signal resolution. 

Secondly, there are trigger neurons that transfer signals 
without significant delay. In contrast to them, integrator 
neurons respond with a certain amount of delay. In the dorsal 
cochlear nucleus, periodic signals are transferred with 
different delays. There, onset latencies of integrator neurons 

up to 120 ms have been observed (Langner and Schreiner, 
1988). 

When the delay corresponds to the signal period, the 
delayed response and the non-delayed response to the next 
modulation wave coincide. By this procedure, the missing 
fundamental tone and hence periodicity pitch can be detected 
in the brain. Both groups of neurons are synchronized by the 
oscillator neurons. 

According to Langner (1997, 2015), pitch and timbre (i.e. 
frequency and periodicity) are mapped temporally and also 
spatially and orthogonally to each other in the auditory 
midbrain and auditory cortex as a result of a combined 
frequency-time analysis that is some kind of autocorrelation 
mechanism by comb-filtering, including phase locking, which 
means that phase differences among different signals can be 
neglected. 

But the question remains why actually the periodicity pitch 
occurs in the frequency response spectrum in the brain, 
although it is present neither in the original signal nor in a 
superposition of the signal with delayed versions thereof, 
because summation of signal waveforms does not alter the 
frequencies in the respective spectra, only their amplitudes. In 
addition, autocorrelation may introduce only overtones into 
the spectra, i.e. integer multiples of the frequencies in the 
original signals, but not subharmonics like the periodicity 
pitch frequency. 

Lee et al. (2009, 2015) mention combination tones as a 
possible cause. They are artificially perceived when two real 
tones with two frequencies f1 < f2 sound at the same time and 
have percepts corresponding to the frequencies f1–k·(f2–f1) 
where k is a positive integer. Combination tones are derived 
from the distortion products (cf. Hartmann, 1997, Chapter 22) 
generated by the non-linear behavior of the auditory system. 
However, there are many more combination tones than tones 
occurring in the response spectra, and the value of k yielding 
the periodicity pitch frequency may be rather high. 

II. AIMS 
The aim of this paper is therefore to find out more 

precisely the relevant factors that lead to the occurrence of the 
periodicity pitch in the response spectrum of a signal. Reasons 
may be (among others): 

 
1. Phase-locking induced by oscillator neurons with 

intrinsic oscillation frequency, different from the 
frequencies in the input; 

2. Autocorrelation or distortion products which may be 
realized by superposition of the input signal and a 
delayed version of it; 

3. The transformation of the input signal into pulse trains 
(spikes) whose maximal amplitude is limited by a 
fixed uniform value. 
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We already briefly discussed reasons #1 and #2 in the 
introduction (Section I). On the one hand, they allow to derive 
the periodicity pitch, but on the other hand they do not exactly 
explain why the periodicity pitch frequency is physically 
present in the auditory brainstem response. Let us thus inspect 
reason #3 in more detail: 

In the brain, spikes are created when the action potential of 
a neuron crosses some threshold, namely if the net excitation, 
received by a neuron over a short period of time, is large 
enough. As a side effect, the amplitude of the signal is limited 
by this procedure. As we will demonstrate next (in Sections 
III and IV), this kind of distortion of the original signal yields 
the desired result, because then only specific combination 
tones are present in the frequency spectrum. 

III. METHOD 
The stimuli from other studies are used as input to a 

theoretical model and compared with the corresponding 
response spectra in the brain. Lee et al. (2015) use an electric 
piano sound (Fender Rhodes) recorded from a digital 
synthesizer. The stimuli are binaurally presented to adult 
subjects through insert headphones, and the responses are 
collected using several scalp electrodes. The waveform of the 
original stimulus, in this case the perfect fifth mentioned in 
the introduction, is shown in Figure 1 in blue. As one can see, 
the signal has an overall period length of about 18.1 ms. It 
corresponds to the periodicity pitch of 55.3 Hz (cf. Section I). 

 

 
Figure 1. Perfect fifth (electric piano sound): original signal 
(blue); amplitude-limited response (red).  

 
In the following, we introduce a recurrent artificial neural 

network model for generating and perceiving such periodic 
waveforms. Generally, an artificial neural network consists of 
many neurons which are connected with each other. In 
recurrent networks, e.g. echo state networks (Jaeger, 2001, 
2007), the neurons may be recursively connected and the 
activation of each neuron changes over time. If the neurons 
x1, …, xn are connected to a neuron y, then it holds 
y(t+τ) = g(w1·x1(t)+...+wn·xn(t)). Here, w1, …, wn are weights, 
τ is a discrete time constant, and g is the so-called activation 
function. 

The activation function g may be the identity. In this case, 
one speaks of linear activation. With linear activation and also 
with deviations thereof (see below), pure cosine and sine 
waves can be generated by a simple recurrent network 
consisting of only two neurons (see Figure 2). If we want to 
generate x1(t) = α·cos(ω·t+φ) and x2(t) = α·sin(ω·t+φ), 
respectively, where α is the amplitude, ω = 2π·f the angular 
frequency, and φ the phase shift of the oscillation, then the 
initial state must be x1(0) = α·cos(φ) and x2(0) = α·sin(φ). 
Applying the trigonometric addition theorems, we obtain the 
following recursion formulas below where the coefficients 
correspond to a rotation matrix with rotation angle ρ = ω·τ: 

x1(t+τ) = cos(ρ)·x1(t) –sin(ρ)·x2(t) 

x2(t+τ) = sin(ρ)·x1(t) +cos(ρ)·x2(t) 

More complex waveforms are obtained by superposition, 
i.e. summation of several different simple waveforms. Usually, 
a non-linear, strictly increasing sigmoidal activation function 
g is used in artificial neural networks (cf. Goodfellow et al., 
2016), e.g. the logistic function, the hyperbolic or arc tangent, 
or simply the sign function. By this, the input signal is 
transformed into a rectangular pulse train with uniform 
maximal amplitude. For our running example, the perfect fifth, 
Figure 1 shows in red the amplitude-limited response of the 
artificial neural network by applying the sign function as 
activation function g to the input signal. 

 
 

 

 
Figure 2. Recurrent artificial neural network for sinusoid 
generation and perception. Two neurons suffice. Each neuron 
can act as input and/or output of an external signal. 

IV. RESULTS 
From the given waveforms, the frequency spectra of the 

original signal and the amplitude-limited signal can be easily 
computed. This as well as the implementation of the recurrent 
artificial neural networks has been done by means of a 
MatLab/Octave program (Higham and Higham, 2017) written 
by the author. For this, a Fourier transformation has to be 
performed (cf. Hartmann, 1997, Chapter 8). In the 
implementation, the discrete variant is used, the Fast Fourier 
Transformation (cf. Hartmann, 1997, Chapter 21). 

Figure 3 shows the frequency spectra of the perfect fifth 
(electric piano sound) for the original signal (in blue) and its 
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amplitude-limited response (in red). The periodicity pitch 
occurs physically in the real brainstem response (see Lee et al., 
2015, Figure 5) and the predicted frequency spectrum, 
although our recurrent artificial neural network model is 
rather simple. The key point is the non-linear, sigmoidal 
activation. Neither an autocorrelation analysis nor a complex 
neural model, e.g. with oscillating neurons (see e.g. Shapira 
Lots and Stone, 2008, and Lerud et al., 2014), is required. 

 

 
Figure 3.  Frequency spectra of perfect fifth (electric piano 
sound): original signal (blue); amplitude-limited response (red). 

However, until now only a qualitative comparison of the 
brainstem response spectrum with the spectrum predicted by 
the model has been done. Therefore, of course, this point 
needs further investigation. Nevertheless, both the real 
brainstem response frequency spectrum and that computed by 
the theoretical model show: 

 
• The response spectra contain as expected in addition to 

the original spectrum first and foremost the periodicity 
pitch frequency, not arbitrary difference tones. 

• The peaks in the response spectrum are sharper the 
more pulse-like the transformed input is. 

• The peaks at the periodicity pitch frequencies are more 
salient for more consonant harmonies. In this case, the 
periodicity pitch frequency is comparatively high. 

 
The latter means that the relative periodicity, as defined by 

Stolzenburg (2015), is relatively low. Relative periodicity 
denotes the approximated ratio of the period length of the 
musical harmony (i.e. its periodicity pitch) relative to the 
period length of its lowest tone component. The good 
correlation between relative periodicity and consonance has 
been shown extensively by Stolzenburg (2015). The 
periodicity pitch frequency of our perfect fifth is 
approximately 55.3 Hz. This corresponds exactly to the first 
bigger peak in the response spectrum in Figure 3 (in red). 

How does limiting the amplitude of the input waveform 
introduce additional frequencies into the signal, in particular 
the periodicity pitch frequency? In order to understand this 
more precisely, we consider the input signal as a sequence of 
rectangular pulses with uniform amplitude, as in the brain, and 
analyze its frequency spectrum. A similar procedure has been 

undertaken by Ebeling (2007, 2008) in his mathematical 
model for the analysis of the perception of consonance. 

For the perfect fifth with ground tone frequencies of 110 
and 166 Hz, we have pulses every 1/110 ≈ 9.1 ms and every 
1/166 ≈ 6.0 ms, respectively. After an overall period of 
approximately 18.1 ms, which corresponds to the period 
length of the missing fundamental tone, both signals coincide. 
This can be seen in Figure 4 (in blue). Therefore, the 
amplitude is not uniform at this point. Limitation of the 
amplitude is achieved by introducing an additional signal that 
has the frequency of the periodicity pitch, again consisting of 
rectangular pulses. This is also shown in Figure 4 (in red). 
This is the reason why the periodicity pitch frequency is 
present in the amplitude-limited signal. 

 

 
Figure 4.  Perfect fifth with rectangular pulses: original signal 
(blue); additional periodicity pitch frequency signal to limit the 
amplitude to a uniform height (red). 

In general, the additional frequencies of a complex 
harmony comprising several rectangular pulses with different 
frequencies can be determined as follows. In this context, we 
assume that the respective frequency ratios are integer 
fractions. If this is not the case, they can be approximated up 
to a fixed accuracy, e.g. 1% (see e.g. Forišek, 2007). This 
procedure yields us the harmonic-series presentation of the 
given harmony where the real frequencies f1, …, fn are 
mapped to a set of abstract frequencies and their ratios that are 
small integer numbers (cf. Stolzenburg, 2015, Section 3.2). 
For instance, we have the following abstract frequency ratios: 

(a)  4:5:6 for the major triad in root position 
(b)  3:2 for the perfect fifth 
 
In the amplitude-limited signal, all rectangular pulses must 

have uniform amplitude. This means, whenever two pulses of 
different frequencies coincide, it has to be compensated (as 
shown in Figure 4 in red). In consequence, the set of abstract 
frequencies has to be extended iteratively by all possible 
greatest common divisors. These extended sets of abstract 
frequencies for our two examples are (a) 1,2,4,5,6 and 
(b) 1,2,3, respectively. The amplitudes of the newly 
introduced abstract frequencies (here: 1,2 and 1, respectively) 
are -1 in most cases. This holds in particular for the 
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periodicity pitch frequencies of our two examples which 
correspond to the abstract frequency 1. In general, the 
absolute value of the amplitudes may differ from 1 in this 
model calculation. For this, starting with the uniform 
amplitude α(f) = 1 for each abstract frequency f in the 
extended frequency set, each amplitude is corrected by setting 
α(f1) = α(f1)–α(f2) whenever the abstract frequency f1 is a 
divisor of f2. Anyway the periodicity pitch occurs in the 
frequency spectrum, as desired. 

V. CONCLUSIONS 
In summary, the most important factor during the neural 

transformation for periodicity detection seems to be the 
spiking with uniform, limited amplitude (i.e. reason #3, cf. 
Section 2). Even for random phase difference or slightly 
mistuned intervals the results do not change. Autocorrelation, 
intrinsic oscillation, phase-locking, or similar mechanisms 
(see e.g. Shapira Lots and Stone, 2008, and Lerud et al., 2014) 
are not needed to explain the response spectra but nevertheless 
correlate well with the empirical findings. The result that the 
periodicity pitch appears in the response spectrum and not 
arbitrary difference tones can be reproduced by Fourier 
analysis of amplitude-limited pulse trains. 

Nonetheless, it remains an interesting research question 
whether a similar effect can be noted also in the response 
spectrum when the harmonic tones are not presented 
simultaneously, but in succession. This should be the subject 
of future work. In addition, more extensive studies and 
comparisons with real brainstem responses have to be done. 
Last but not least, the recurrent artificial neural network 
model should be developed further. 
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